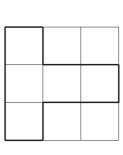
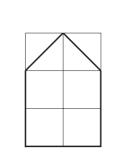
# 9 Areas and Perimeters

This is our next key Geometry unit. In it we will recap some of the concepts we have met before. We will also begin to develop a more algebraic approach to finding areas and perimeters.

### 9.1 Area

The easiest method to find an area of a shape, particularly if it is a simple shape made up of straight lines, is to count the squares inside it.





#### Example 1

Find the area of each of these shapes in terms of the square shown.

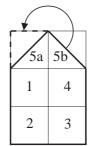
(b)







One square




(a)

| 1 |   |   |
|---|---|---|
| 2 | 4 | 5 |
| 3 |   |   |

This can be divided into 5 of the squares, so its area is 5 square units.

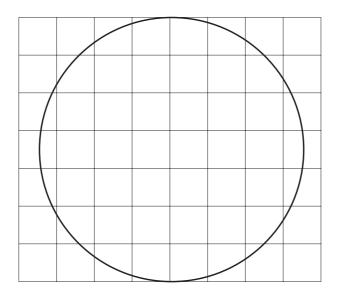
(b)



We have 4 squares (labelled 1, 2, 3 and 4), and the two triangles (labelled 5a and 5b) can be joined together to form another square. So, in total, we have an area of 5 square units.

### Example 2

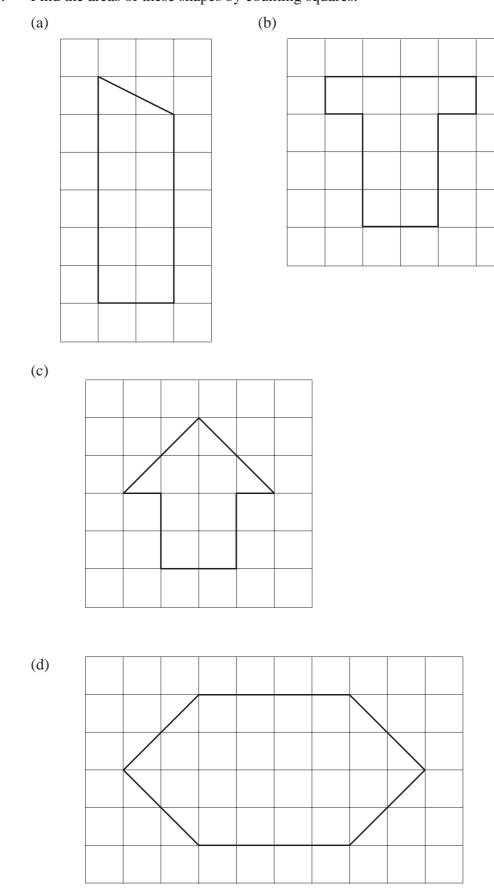
Estimate the area of this shape.


|   | / |   |
|---|---|---|
|   | 6 | 5 |
| 7 | 3 | 2 |
| 8 | 4 | 1 |

### Solution

There are 4 complete squares (labelled 1, 2, 3 and 4). Region 5 and 6 together make up about  $1\frac{1}{2}$  squares, as do regions 7 and 8. So we have another 3 squares giving a total of 7 square units (plus a little bit more!).

### Exercises

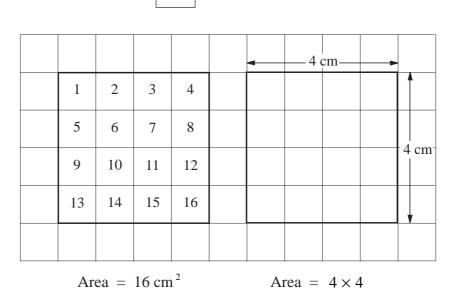

- Draw around your hand on squared paper and find its area. Who has the largest hand in your class?
- 2. Find the area of this circle by counting squares.



9.1

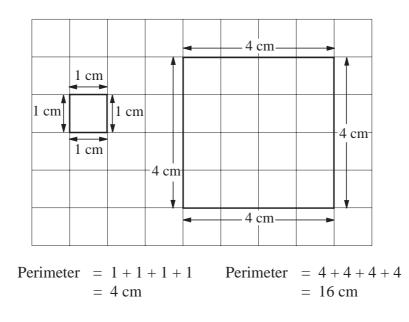
ES,

3. Find the areas of these shapes by counting squares.




### 9.2 Area and Perimeter of a Square

We now bring in standard units for measuring area and perimeter. You should always put units in your answers.


The area of a square can be found by counting squares or multiplying the length of the sides. The area of a square with sides 1 cm is  $1 \text{ cm}^2$ .

Area =  $1 \text{ cm}^2$ 



 $= 16 \text{ cm}^2$ 

The perimeter of a square is the total length of the four sides.



### Note

()

Note also that:

| 1 m  | = 100  cm |
|------|-----------|
| 1 cm | = 10 mm   |

So that, for example,

| 25 mm  | = | 2.5 cm |
|--------|---|--------|
| 8 mm   | = | 0.8 cm |
| 261 cm | = | 2.61 m |
| 32 cm  | = | 0.32 m |
| 6 cm   | = | 0.06 m |

### 1.00.1

### Exercises

1. Find the area and perimeter of each of these squares.

(a)

(b)

|  | <br> | <br> | <br> |
|--|------|------|------|
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |
|  |      |      |      |

|    | (c)                                                                 |
|----|---------------------------------------------------------------------|
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
|    |                                                                     |
| 2. | Find the area of squares with sides of length:                      |
|    | (a) $10 \text{ cm}$ (b) $12 \text{ cm}$ (c) $8 \text{ cm}$          |
|    | (d) 9 cm (e) 15 cm (f) 20 cm                                        |
| 3. | Find the perimeter of squares with sides of length:                 |
|    | (a) 13 cm (b) 8 cm (c) 16 cm                                        |
|    | (d) 19 cm (e) 9 cm (f) 18 cm                                        |
| 4. | Copy and complete each of these statements.                         |
|    | (a) $3.2 \text{ cm} =$ mm (b) $10.3 \text{ cm} =$ mm                |
|    | (c) $28 \text{ mm} =$ cm (d) $216 \text{ mm} =$ cm                  |
|    | (e) $152 \text{ cm} =$ m (f) $84 \text{ cm} =$ m                    |
|    | (g) $1.62 \text{ m} =$ cm (h) $1.7 \text{ m} =$ cm                  |
|    | (i) $0.82 \text{ m} =$ cm (j) $0.07 \text{ m} =$ cm                 |
| 5. | A square has sides of length 20 mm. Find the area of the square in: |
|    | (a) $mm^2$ (b) $cm^2$                                               |
| 6. | The perimeter of a square is 40 cm. How long are its sides?         |

- 7. The area of a square is  $36 \text{ cm}^2$ . How long are its sides?
- 8. The perimeter of a square is 44 cm. What is its area?
- 9. The area of a square is  $144 \text{ cm}^2$ . What is its perimeter?
- 10. For a 2 cm square the perimeter is 8 cm and the area is 4 cm<sup>2</sup>. The perimeter is twice the area.

What are the lengths of the sides of a square for which the perimeter is

- (a) equal to the area;
- (b) half of the area?

### 9.3 The Area and Perimeter of a Rectangle

For a rectangle, say 5 cm by 2 cm, we can proceed either by counting squares or multiplying the lengths. So for example,

| -  |   | - 5 cm |   |   |        |
|----|---|--------|---|---|--------|
| 1  | 2 | 3      | 4 | 5 |        |
| 10 | 9 | 8      | 7 | 6 | +2  cm |
| -  |   |        |   |   |        |

the area of this rectangle is  $10 \text{ cm}^2$  from counting squares or, alternatively;

Area = 
$$5 \times 2$$

 $= 10 \text{ cm}^2$ 

Note also that 1 cm is the same as 10 mm,

so that a 1 cm square has an area of 1 cm $^2$  and this can also be written as

$$1 \text{ cm} \times 1 \text{ cm} = 10 \text{ mm} \times 10 \text{ mm}$$
  
i.e  $1 \text{ cm}^2 = 100 \text{ mm}^2$ 

9.3

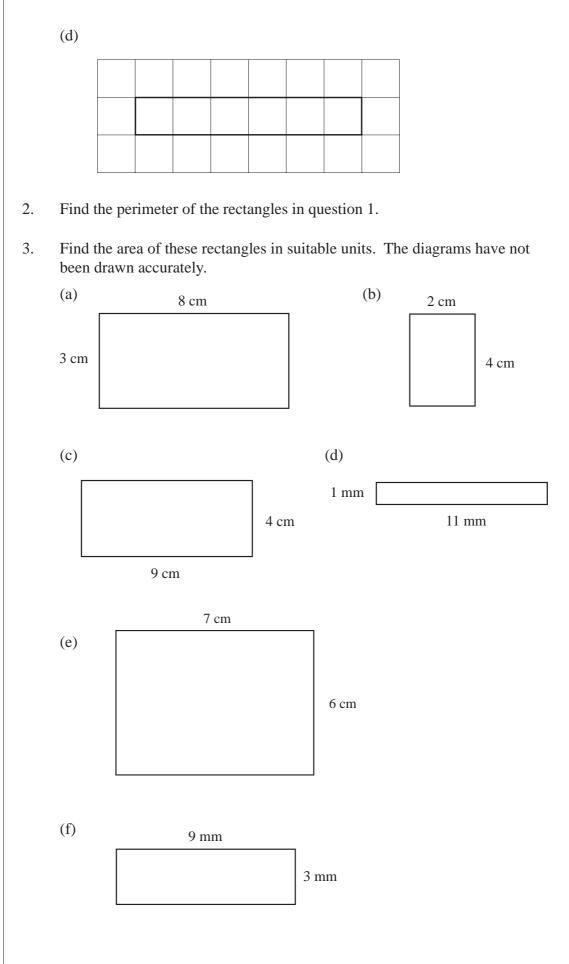
### Example

What is  $1 \text{ m}^2$  in terms of  $\text{cm}^2$ ?

### Solution

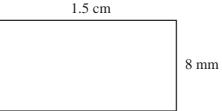
 $1 \text{ m} \times 1 \text{ m} = 100 \text{ cm} \times 100 \text{ cm}$ i.e.  $1 \text{ m}^2 = 10000 \text{ cm}^2$ 

#### Exercises


1. Find the area of these rectangles in  $\text{cm}^2$ .

(a)

(b)


| <br> |  |  |
|------|--|--|
|      |  |  |
|      |  |  |

(c)



MEP Y7 Practice Book A 9.3 Find the perimeter of the rectangles in question 3. 4. Find the area and perimeter of these rectangles. 5. (b) (a) 6.2 cm 4.5 cm 3 cm 4 cm (c) (d) 1.5 m 5.4 mm 4.2 mm 1.4 m (e) (f) 3.6 cm 7.4 mm 6.1 cm 8 mm Find the area and perimeter of this rectangle 6. in cm<sup>2</sup> and cm (a) 1 m in  $m^2$  and m. (b) 30 cm Find the area of this rectangle in  $mm^2$  and  $cm^2$ . 7. 5 cm 3 cm

8. Find the perimeter and area of this rectangle making clear which units you have decided to use.



- A rectangle has an area of 48 cm<sup>2</sup>. The length of one side is 6 cm.
  Find the perimeter of the rectangle.
- 10. A rectangle has a perimeter of 24 cm and an area of 32 cm<sup>2</sup>.What are the lengths of the sides of the rectangle?

### 9.4 Area of Compound Shapes

We illustrate this method with an example.

## 1 in

### Example

Find the area of the shape shown below.

|      |      |      | 3 cm |  |      |      |
|------|------|------|------|--|------|------|
| 7 cm |      |      |      |  |      | 6 cm |
|      |      | 5 cm |      |  |      |      |
|      |      |      |      |  |      |      |
|      |      |      |      |  | 3 cm |      |
|      | 3 cm |      |      |  |      |      |

### Solution

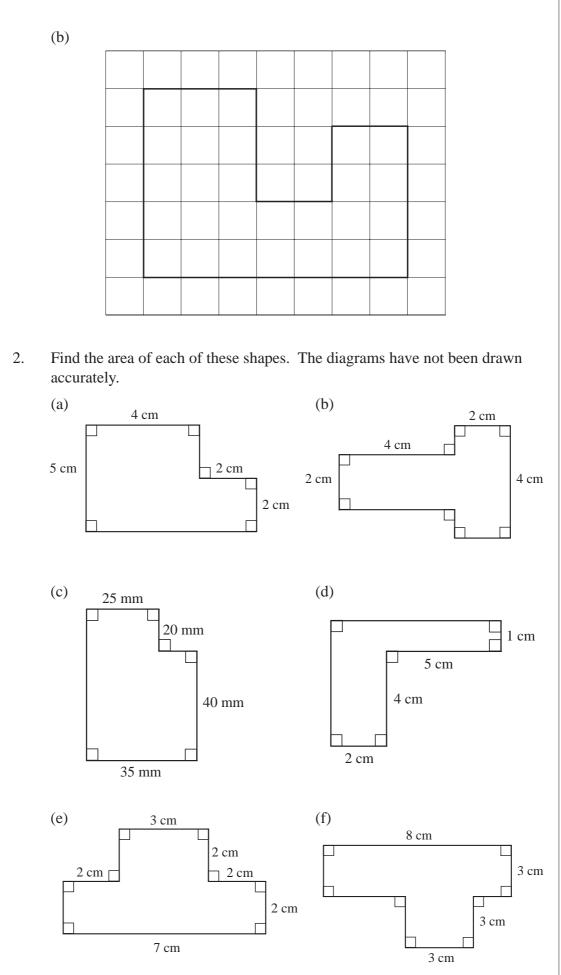
Divide the shape into rectangles; one way is shown below.

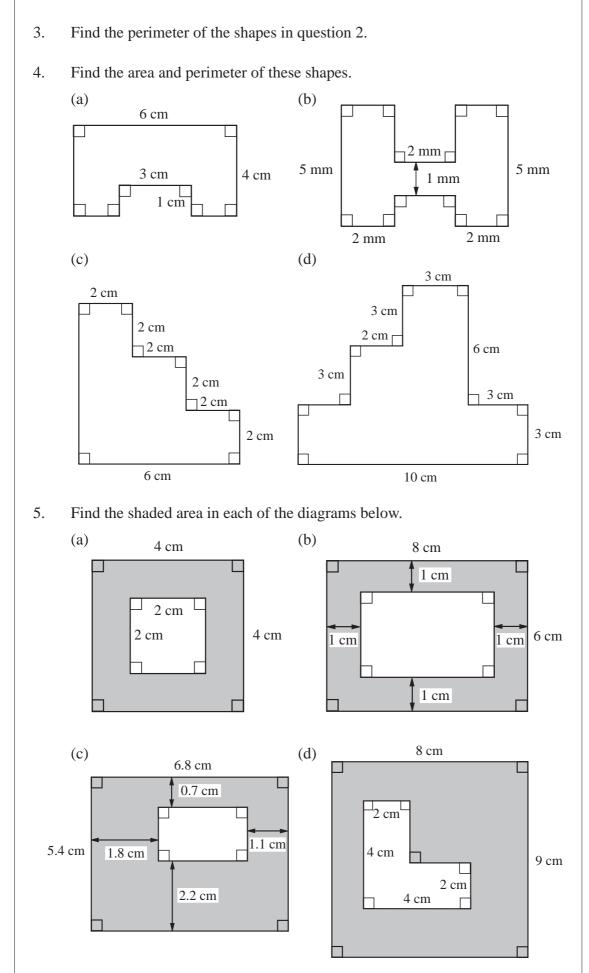
|      |      |      | В    |  |      |      |
|------|------|------|------|--|------|------|
|      | А    |      | 3 cm |  | С    |      |
| 7 cm |      |      |      |  |      | 6 cm |
|      |      | 5 cm |      |  |      |      |
|      |      |      |      |  |      |      |
|      |      |      |      |  | 3 cm |      |
|      | 3 cm |      |      |  |      |      |

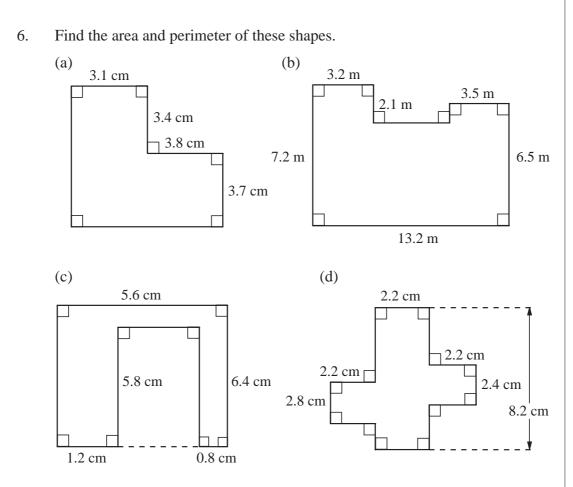
Area of A =  $3 \times 7 = 21$  cm<sup>2</sup>

Area of B =  $3 \times 2 = 6 \text{ cm}^2$ 

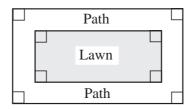
Area of C =  $3 \times 6 = 18$  cm<sup>2</sup>


*Total Area* =  $21 + 6 + 18 = 45 \text{ cm}^2$ 

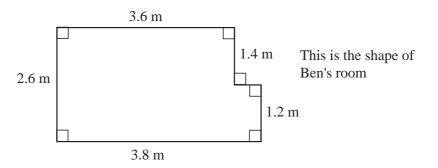

### Exercises


1. Find the area of these shapes.

(a)


#### MEP Y7 Practice Book A








A lawn is 3 m by 5 m. A path 1 m wide is laid around the lawn.
 Find the area of the path.



8. Ben's dad buys a carpet that is 3 m wide and 4 m long.



How much carpet is wasted?

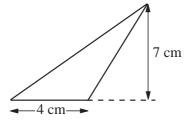
9. Wendy is going to paint the front of the house for her mum and dad. Find the area that needs to be (a) 2 m 1 m painted. (b) Wendy gets 50p for every 1.5 m 1.5 m  $1 \text{ m}^2$  that she paints. How 1 m 5 m 2 m much money does Wendy get? 2 m 1.5 m 6 m 4 cm This shape can be cut out of card 10. 3 cm and folded to form a box. 3 cm How much card is wasted if this 3 cm shape is cut out of a sheet 15 cm 3 cm by 20 cm? The Area of a Triangle For a triangle, Area =  $\frac{1}{2}$  × base × perpendicular height Height Base

9.4

### Example 1

Find the area of the triangle shown.

#### Solution


Area = 
$$\frac{1}{2} \times 6 \times 7$$
  
= 21 cm<sup>2</sup>



Ξ

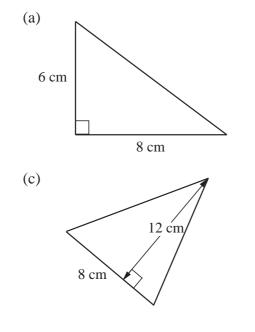
#### Example 2

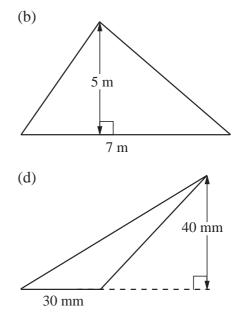
Find the area of the triangle shown.



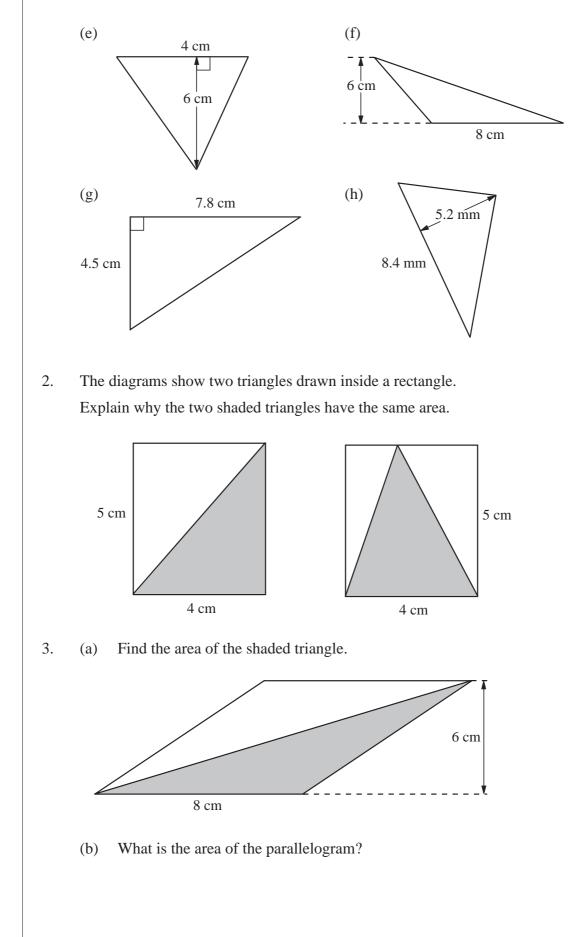
6 cm

7 **`**cm

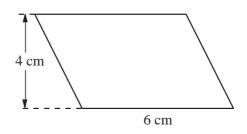

#### Solution


Area = 
$$\frac{1}{2} \times 4 \times 7$$
  
= 14 cm<sup>2</sup>

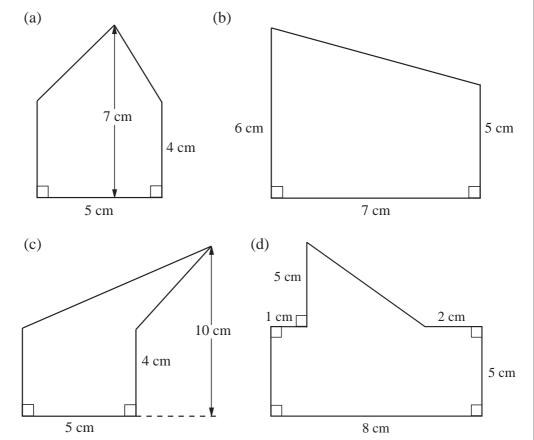
### 1


### Exercises

1. Find the area of each of these triangles.



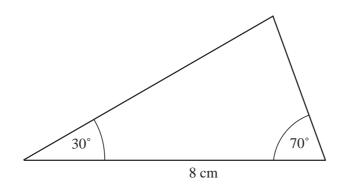




#### MEP Y7 Practice Book A

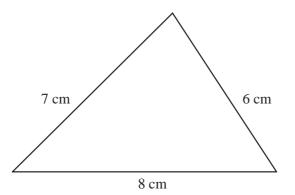


4. Find the area of this parallelogram.




5. Find the area of each of these shapes. They have not been drawn accurately.




A pyramid can be made by folding up the shape below. 6. What is the area of this shape? 3 cm 3 cm 2.5 cm-7. Find the shaded areas. (a) 5.2 cm 3 cm 4 cm 6.2 cm (b) 2 cm 6.2 cm 2 cm ¥\_ 8 cm



8. Draw this triangle. Find its area to the nearest  $0.1 \text{ cm}^2$ .



9. Find the area of this triangle to the nearest  $0.1 \text{ cm}^2$ .



- 10. Find the area of an equilateral triangle with sides of length 4 cm, giving your answer correct to 1 decimal place.
- 11. What is the area of the biggest triangle that can be drawn inside a parallelogram with sides of length 10 cm and 12 cm?