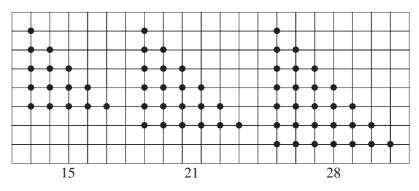
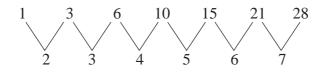


Example


The first 4 triangular numbers are represented by the diagrams below:


- (a) Draw the next 3 triangular numbers.
- (b) Describe how to find the 8th, 9th and 10th triangular numbers without drawing the diagrams.

Solution

(a) Note that an extra row of dots is added to each triangle and that the extra row has one more dot than the previous row. The next 3 triangular numbers are shown below:

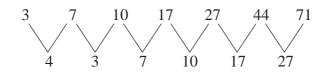
(b) To extend the sequence of triangular numbers, look at the difference between the terms:

Note that the difference between each term increases by 1 as you move along the sequence.

So,

8th term = 28 + 8= 369th term = 36 + 9= 4510th term = 45 + 10= 55

(i)


Example

Write down the next 3 terms of the sequence:

3, 7, 10, 17, 27, 44, 71, ...

Solution

Look at the differences between each term:

The first difference is not very helpful, but then note how the sequence of differences is the same as the original sequence.

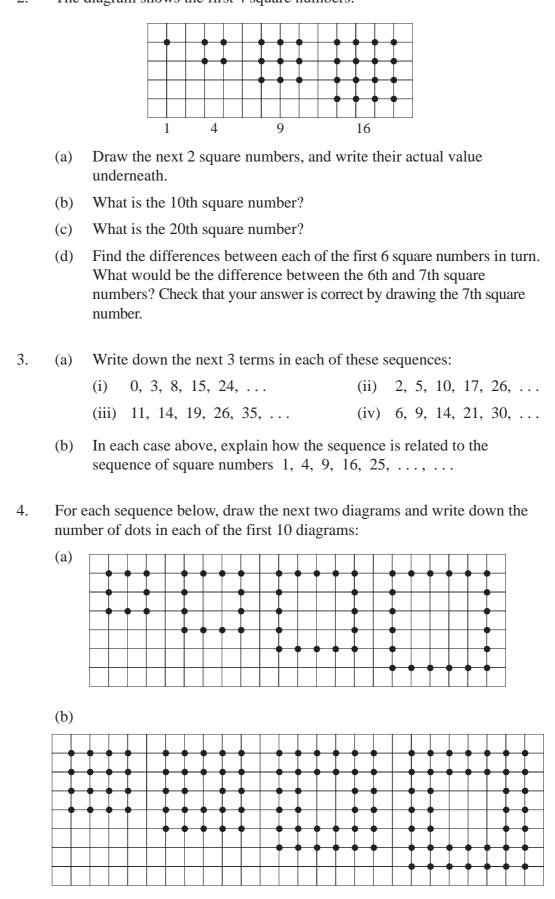
```
For example, 10 + 7 = 17
```

To find the next 5 terms:

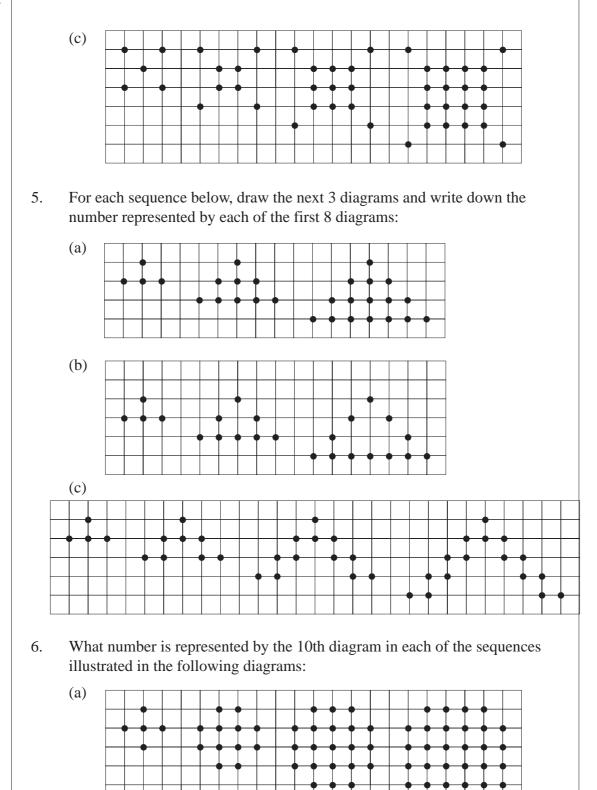
8th term = 71 + 44= 1159th term = 115 + 71= 18610th term = 186 + 115= 301

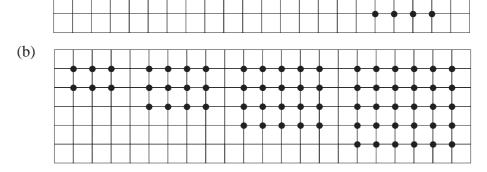
In this type of sequence, called a *Fibonacci* sequence, each term is the sum of the two previous terms. For example, this sequence begins:

3, 7, 10 where 3 + 7 = 10


and the next term is 10 + 7 = 17.

Triangular Numbers	1, 3, 6, 10, 15, 21, 28,
Square Numbers	1, 4, 9, 16, 25, 36, 49,
Cubic Numbers	1, 8, 27, 64, 125,
Fibonacci Sequence (formed by adding the two	1, 1, 2, 3, 5, 8, 13, previous terms to get the next one)


Exercises


- 1. Write down the next 4 terms of each of these sequences:
 - (a) 4, 7, 10, 13, 16, 19, ...
 - (b) 5, 11, 17, 23, 29, 35, ...
 - (c) 6, 8, 11, 15, 20, 26, ...
 - (d) 8, 10, 14, 20, 28, 38, ...
 - (e) 24, 23, 21, 18, 14, 9, ...
 - (f) 2, 12, 21, 29, 36, 42, ...
 - (g) 1, 1, 2, 4, 7, 11, ...

2. The diagram shows the first 4 square numbers:

MEP Y7 Practice Book B

MEP Y7 Practice Book B

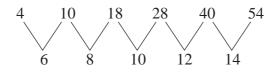
	(c)
7.	The Fibonacci sequence begins:
	1, 1, 2, 3, 5, 8
	Calculate the 10th and 20th terms in this sequence.
8.	Write down the next 5 terms in each of these sequences:
	(a) 2, 2, 4, 6, 10,
	(b) 1, 3, 4, 7, 11,
	(c) 2, 5, 7, 12, 19,
	(d) 1, 9, 10, 19, 29,
9.	Write down the missing terms in each sequence:
	(a) , , 5, 9, 14, 23, 37, , ,
	(b) , , , , , , 20, 33, 53, 86, 139,
	(c) , , , , , , , 7, 11, 18, 29, 47,
10.	A sequence begins:
	1, 2, 3, 6, 11, 20, 37, 68,
	(a) What do you get if you add: (i) the first three terms,
	(ii) the 2nd, 3rd and 4th terms,
	(iii) the 3rd, 4th and 5th terms?
	(b) What are the next 3 terms in the sequence?
	(c) A similar sequence is given below. Write down the missing terms.
	, , , 14, 26, 48, 88, 162,
	(d) A sequence begins:
	1, 1, 3, 5, 9, 17, 31,
	Write down the next 3 terms in the sequence.

13.3 Patterns and Matchsticks

In this section we look at forming patterns with matches, to generate sequences. We then look at how to describe these sequences.

Example 1

(a) Draw the next three shapes in this sequence:


- (b) How many matches are used in each shape?
- (c) How many matches are used in the 10th shape?

Solution

(a) Here is the sequence with the next 3 shapes:

	_		_		 _	_		 	<u> </u>	<u> </u>		_	_	_	_	_		_	 	_	_	_	
																						_	
4		1	0		18			2	8					40					5	4			

- (b) The number of matches is written under each shape.
- (c) The sequence is listed here with the differences between terms:

Note how the differences increase by 2 as the sequence continues.

The 6th term is 54.

The 7th term is 54 + 16 = 60.

The 8th term is 60 + 18 = 78.

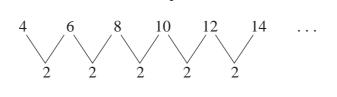
The 9th term is 78 + 20 = 98.

The 10th term is 98 + 22 = 120.

Example 2

The diagram shows the first 3 shapes in a pattern made from matches:

/	\	/	1	/	/	
1	/					
		/	/			
				1	/	


- (a) Draw the next 3 shapes and state how many matches are used to make each shape.
- (b) Write down the 10th and 20th terms in this sequence.
- (c) What is the *n*th term in this sequence?
- (d) One shape needs 20 matches. Which one is it?

Solution

(a) The diagram shows the next 3 shapes:

/	/	/	1	/	1	/	1	/	\	/	/	
1	/											
		1	/									
				1	/							
						1	/					
								1	/			
										1	/	

The number of matches in each shape is listed below:

Notice that the difference between each term is 2.

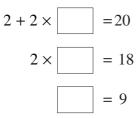
(b) Note that:

1st term	4	=	$2 + 2 \times 1$
2nd term	6	=	$2 + 2 \times 2$
3rd term	8	=	$2 + 2 \times 3$
4th term	10	=	$2 + 2 \times 4$

So to find the 10th term,

 $2 + 2 \times 10 = 22$

and the 20th term,


$$2 + 2 \times 20 = 42$$

- (c) The *n*th term is $2 + 2 \times n = 2 + 2n$.
- (d) For the shape that needs 20 matches, we need to find the missing number in the calculation:

The missing number is 9.

We can write this in steps:

1.000.0

Exercises

1. Here is a pattern formed with matches:

- (a) Draw the next 3 shapes.
- (b) How many matches are used in each of the first 6 shapes?
- (c) How many matches are needed for each of the 7th and 8th shapes?
- 2. Here is a pattern of shapes made with matches:

- (a) Draw the next 3 shapes.
- (b) How many matches are needed for the 10th shape?
- (c) Which shape needs 97 matches?

MEP Y7 Practice Book B

- / / / / \mathbf{i} ~ \mathbf{i} / 1 / / / / / / / /
- 3. How many matches are needed to make the 8th shape in this pattern?

4. A pattern of rectangles is made using matches:

- (a) Draw the next two rectangles.
- (b) How many matches would be needed for the 7th rectangle?
- (c) Which rectangle requires 199 matches?
- 5. The shapes below are made using matches:

																								_
	/	/			/	1					/	1							/	1				
•	/	/		/			1			/			1					/			1			
				\			/		/					1			/					\		
					1	/			1					/		/							$\mathbf{\mathbf{N}}$	
										1			/			1							/	
											1	/					/					/		
																		1			/			
																			1	/				

- (a) How many matches would be needed for each of the 5th and 6th shapes?
- (b) How many matches would be needed for the *n*th shape?
- (c) Which shape contains 88 matches?

	/	>			/	1						/	\mathbf{N}								/				
		/		/		<u> </u>	<u> \</u>				/			1						/			\		
	_									${}$		-	-					/				-			
										•				/				$\overline{\overline{}}$	-	-		-		-	$\overline{/}$
												\	/						\					/	
	_			_																1			/		
-	-		-	_																					
					1										I				I		I		1		
΄.	A	Ąр	atte	rn o	f re	cta	ngl	es i	is n	nad	le f	ror	n n	nate	che	s:									
		Г			1												-				1		1	1	
		-		_				_	_					_								-		-	
		-		_																					
							_		-			İ						İ					İ		
		Γ																							
		- H	_																						
	((a)	H	ow	mai	ny	ma	tche	es a	are	ne	ede	ed f	or	the	10)th	rec	tan	gle	?				
	((a) (b) (c)	Η	ow ow /hic	mai	ny	ma	tche	es a	are	ne	ede	ed f	or	the	nt									
	(((b) (c) Hov	H W w m	ow	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
·• Г	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
5.	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
;. - - -	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
	(((b) (c) Hov	H W w m	ow /hic any	mai h re ma	ny i ecta tch	ma ingl es a	tche le re	es a equ	are iire	ne es 5	ede 50 r	ed f nat	or che	the es?	nt	h re	ecta	ang	le?		atte	ern	of	
		b) (c) How rect	H W w m ang	ow /hic any		ny i ecta tch w?				are nire ede	ne es 5 ed t		ed f mat nak		the s?	nt	h re	ecta	ang	le?			ern	of	
	((H T	b) (c) How rect	H W w m ang			ny i ecta tch w?				are nire ede	ne es 5 ed t		ed f mat nak		the s?	nt	h re	ecta	ang	le?		atte	ern	of	
3. - - -	((H T	b) (c) How rect	H W w m ang			ny i ecta tch w?				are nire ede	ne es 5 ed t		ed f mat nak		the s?	nt	h re	ecta	ang	le?			ern	of	
	((H T	b) (c) How rect	H W w m ang			ny i ecta tch w?				are nire ede	ne es 5 ed t		ed f mat nak		the s?	nt	h re	ecta	ang	le?			ern	of	

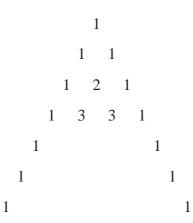
Write down:

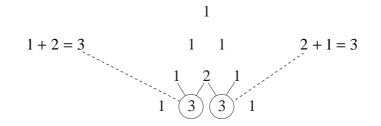
- (a) the number of matches in each of the 5th and 10th shapes,
- (b) the number of matches in the *n*th shape.
- How many matches are needed to make the *n*th shape of each of these patterns? 10. (a) / / / / / 1 1 1 / 1 / 1 1 / / 1 (b) / / / 1 \mathbf{i} / / / 1 1 / / / 1 / 1 1 1 / 1 / / / / 1 (c) (d) (e) (f) ノト / 1 / / 1 1 $\overline{\}$ / / 1 /

13.4 Two-Dimensional Number Patterns

This section explores 2-dimensional number patterns. One of the most famous of these is *Pascal's triangle*.

Example 1


Here are the first 4 rows of Pascal's triangle.


Write down the next 3 rows of the triangle.

Solution

Note that each row starts and ends with a 1.

The other numbers are found by adding together the two numbers that are diagonally above them in the previous row.

Using this rule the triangle can be completed:

(i)

Example 2

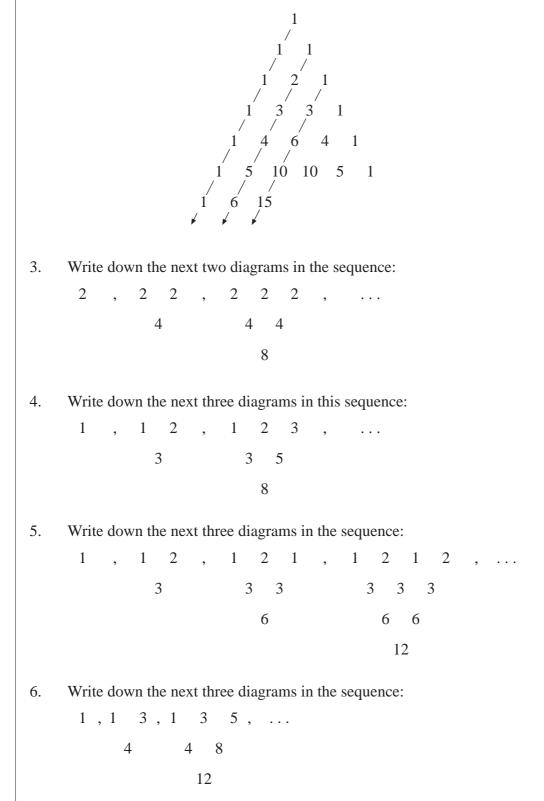
What are the next 2 diagrams in the sequence:

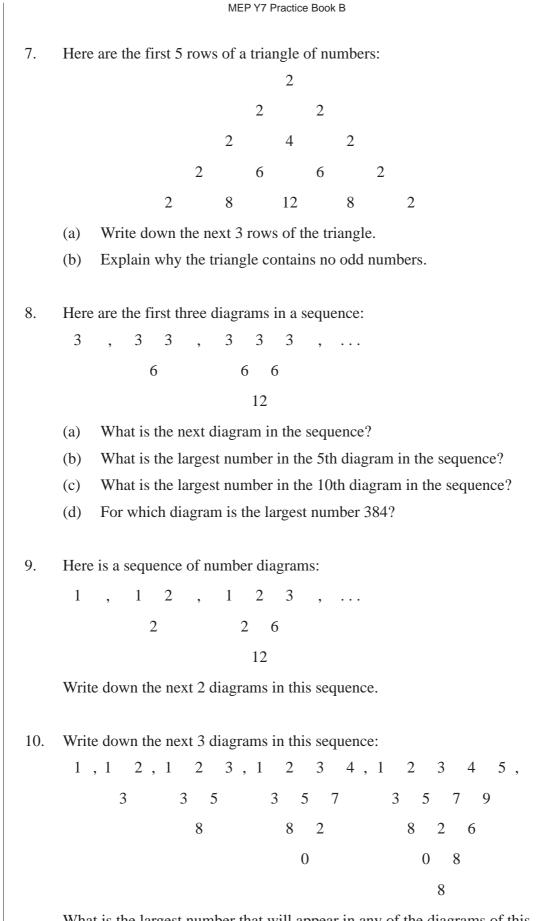
2

Solution

Note how the numbers in the next row are obtained by adding together two of the numbers in the row above.

For example, in the 2nd diagram, 1 + 1 = 2


and in the 3rd diagram, 2 + 2 = 4.


Using this rule, the sequence can be extended:

13.4

Exercises

- 1. In example 1, the first 7 rows of Pascal's triangle are listed. By adding the next 3 rows, write down the first 10 rows of the triangle.
- 2. Patterns can be found in the diagonals of Pascal's triangle. Copy the part of the triangle shown here and add the next 4 terms to the three diagonals shown.

What is the largest number that will appear in any of the diagrams of this sequence?